Project Alpter
 "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space

Methodological cues for the analysis of the terraced slope in the pilot area
 Pianazzola-Bregaglia - Data Sheet Analysis 1:5000

Alice G. Dal Borgo - Human Geography Institute, State University of Milan Tecla Pagnoncelli - Earth Science Department, State University of Milan

Definition of selection criteria of the sub-areas for the 1:5000 analysis through:
-Analysis of the geological and anthropic features of the pilot area
-Analysis of the geomorphological elements of the sub- area Pianazzola such as slope, exposure, geometry of terracing, state of conservation of walls and crops

Selected criteria for the choice of the sub-areas for the 1:5000 analysis:

- Average slope
- Slope concavity - convexity
- Altimetry
- Exposition - Aspect
- Land use

Selected sub-areas typologies for the 1:5000 data sheet analysis:

- Active / abandoned vineyard
- Copsy / fruit chestnut
- Vineyard + pasture / forage
- Vineyard + self-consumption horticulture / orchard

Project Alpter
"Terraced landscapes of the alpine arc"
Eu Programme Interreg IIIB Alpine Space

Utilised analysis tools:

- Technical regional map
- Actual cadastral map
- Historic cadastral map
- Digital images
- Geomorphological map

Final Products

Data sheet 1:5000 example:
 "Cultivated thalweg"

Paragraph B1

- foundation laid on

It could be useful to add the little box for the X beside the option.

- slope of walls (see (B1) Statistical analysis of THE GEOMETRICAL FEATURES)
We introduced a value in degrees that varies from hypothetical 0° (the wall is completely stretched towards the mountain) passing through 90° (the wall is perfectly vertical) to another hypothetical 180° (the wall is completely collapsed towards the valley).
- slope of stripes

We introduced a value in degrees that varies from 0° (the stripe is perfectly horizontal) to 90° (hypothetical completely vertical stripe).

B4-Other structures	
TIPOIOGY	NUMBER
Dwelling structures:	1
Shelters:	3 (ONE OF WHICH IS NEW)
Other structures (specity):	1 (NEW WOOD'S DEPOSIT)
Notes:	the dwelling structures and the shelier in impluvium are IN GOOD STATE OF CONSERVATION
C- Land use (actual)	
Soil characters	(reference to FAO soil classification) - Umbrisols (Umbric) and Cambisols (Ochric/CAmbic)
Main cultivation:	Grapevine
Other cultivations (if present):	FRUIT TREES, FORAGE GRASS
Agricultural technique:	Alternate RITOCHINO (PERGOLA) AND GIRAPOGGIO
Vegetation cover (abandoned	trees

Paragraph B3

-water channel system
-overlapping with paths
-slope direction of stripes
It could be useful to add the little box for the X beside the option;
Channel systems are intended like natural or/and anthropic?

Paragraph B4

-access to the area (actual)
It could be useful to add the little box for the X beside the option.

D - State of decay					
	All damaged	In part damaged	In good shape		
Level of decay of the walls:	Totally damaged	Partially damaged	Functioning		
Level of efficiency of water collection system:	Uncultivated	Partially cultivated	Totally cultivated		
Diffusion of cultivation:	Not present	Partial	Total		
Vegetation cover:					

D1 - Causes of the decay (if detectable, more than one possible)	\mathbf{x}

Notes: The whole area is owned by members of 9 families, in this case it is relevant the land division among members of the same families, which has brought to a constant reduction of the dimension of lits and properies. Lols, indeed, are very smal and lots n. 286, 287, 213, 214, 215, 216, 217, 100
for 213 and 217 that are owned by the same person),
lols n. 218, 219, 220, 222: same owner
lots n 225, 226: same owne
-lot n. 227: 4 owners belonging to the same family
-lot $n .228: 6$ owners belonging to the same family

Paragraph D

-state of decay
It could be useful to add the little box for the X beside the option.

Paragraph E

-Property
It could be useful to add the little box for the X beside the option.

A note to the Data Sheet is attached with the following appendixes enclosed:
-(A) Position map
-(B1) STATISTICAL ANALYSIS OF THE GEOMETRICAL FEATURES
-(G) Photographic documentation
(B1) STATISTICAL ANALYSIS OF THE GEOMETRICAL FEATURES:
INTRODUCTION

THE AIM OF THE STATISTICAL ANALYSIS IS :

- TO DEFINE STANDARD TYPOLOGIES OF TERRACING, USING SURVEYED GEOMETRICAL PARAMETERS
- TO EVALUATE THE RELATIONSHIP BETWEEN THESE STANDARD TYPOLOGIES AND THE:
- the GEOMORPHOLOGICAL SETTING and
- the LAND USE
- TO VERIFY THE APPLIABILITY OF STANDARD TYPOLOGIES TO TERRACED AREAS LOCATED OUT OF THE PIANAZZOLA PILOT AREA.
(B1) STATISTICAL ANALYSIS OF THE GEOMETRICAL FEATURES:

L = LENGTH OF THE STRIPE
β = SLOPE OF THE STRIPE
H = HEIGHT OF THE WALL
$\alpha=$ SLOPE OF THE WALL* P = WIDTH OF THE STRIPE

(B1) STATISTICAL ANALYSIS OF THE GEOMETRICAL FAETURES:

a = SLOPE OF THE WALL*

Paragraph B - We introduced a value in degrees that varies from... -an hypothetical 0° (the wall is completely stretched towards the mountain)
-passing through 90° (the wall is perfectly vertical)
-to another hypothetical 180° (the wall is completely collapsed towards the valley).

Project Alpter "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space
H = HEIGHT OF THE WALL

1' SET OF MEASURES
2' SET OF MEASURES
AVERAGE VALUE $=\mathbf{0 , 8 2}$
AVERAGE VALUE $=1,23$
MINIMUM VALUE $=0,4$
MINIMUM VALUE $=0,4$
MAXIMUM VALUE $=\mathbf{4 , 0}$
MAXIMUM VALUE = 2,4
MODAL VALUE $=1,2$
STANDARD DEVIATION $=\mathbf{1 , 0 3}$
MODAL VALUE $=1,5$
STANDARD DEVIATION $=\mathbf{0 , 5 9}$

Project Alpter "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space
H = HEIGHT OF THE WALL

AVERAGE VALUE $=\mathbf{1 , 6 2}$
MINIMUM VALUE $=0,4$
MAXIMUM VALUE = 4,0
MODAL VALUE = 1,0
STANDARD DEVIATION = 0,82

Project Alpter "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space

L = LENGHT OF THE STRIP

AVERAGE VALUE $=14,08$
MINIMUM VALUE $=\mathbf{4 , 7}$
MAXIMUM VALUE $=\mathbf{2 0}$
MODAL VALUE = 10
STANDARD DEVIATION $=\mathbf{4 , 3 9}$

1' SET OF MEASURES
AVERAGE VALUE $=14,72$
MINIMUM VALUE $=4,7$
MAXIMUM VALUE = 14,7
MODAL VALUE = $\mathbf{2 0}$
STANDARD DEVIATION $=\mathbf{4 , 2}$

2' SET OF MEASURES
AVERAGE VALUE $=\mathbf{1 2 , 2 9}$
MINIMUM VALUE $=9$
MAXIMUM VALUE = 19
MODAL VALUE = 10
STANDARD DEVIATION $=\mathbf{4 , 2 3}$

Project Alpter
 "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space
$\alpha=$ SLOPE OF THE WALL

Range of slope (angle ${ }^{\circ}$)
$\Delta \alpha=5^{\circ}$
$\alpha>90^{\circ} \longrightarrow$ downslope
$\alpha<90^{\circ} \longrightarrow$ upslope

Project Alpter
 "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space

AVERAGE VALUE $=\mathbf{1 , 6 7}$
MINIMUM VALUE $=1$
MAXIMUM VALUE $=4$
MODAL VALUE $=\mathbf{1 , 5 0}$
STANDARD DEVIATION $=\mathbf{0 , 6 7}$

1' SET OF MEASURES
AVERAGE VALUE $=\mathbf{1 , 6 3}$
MINIMUM VALUE = 1
MAXIMUM VALUE = 4
MODAL VALUE = 1,4
STANDARD DEVIATION $=\mathbf{0 , 8 5}$

2' SET OF MEASURES
AVERAGE VALUE $=\mathbf{1 , 6 1}$
MINIMUM VALUE $=\mathbf{1 , 2 0}$
MAXIMUM VALUE $=\mathbf{2 , 9 0}$
MODAL VALUE $=\mathbf{1 , 5 0}$
STANDARD DEVIATION $=\mathbf{0 , 4 8}$

Project Alpter "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space
$\beta=$ SLOPE OF THE STRIPE

1' SET OF MEASURES
AVERAGE VALUE $=19,58$
MINIMUM VALUE = 5
MAXIMUM VALUE = 45
MODAL VALUE = 10
STANDARD DEVIATION = 12,82

2' SET OF MEASURES
AVERAGE VALUE $=15,83$
MINIMUM VALUE = 5
MAXIMUM VALUE = 37
MODAL VALUE = 10
STANDARD DEVIATION $=\mathbf{1 2 , 1 7}$

Project Alpter
 "Terraced landscapes of the alpine arc"

Eu Programme Interreg IIIB Alpine Space

-PRODUCTS OF STATISTICAL ANALYSIS OF THE GEOMETRICAL FEATURES:

-GEOMETRICAL CHARACTERIZATION OF 13 SUB-AREAS COMPLETED
-INDIVIDUATION OF STANDARD GEOMETRIES AND DEFINITION OF THEIR RELATIONSHIP TO BOTH THE GEOMORPHOLOGICAL SETTING and the LAND USE - IN PROGRESS

Project Alpter
 "Terraced landscapes of the alpine arc"
 Eu Programme Interreg IIIB Alpine Space

Other activities:

